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A chain of transfer equations for the second and third moments of dispersed-phase-velocity pulsations in the
anisotropic field of energy of random particle motion is obtained based on the computational procedure de-
veloped. The interphase and interparticle interactions are allowed for. The turbulent characteristics of the gas
are calculated on the basis of a one-parameter turbulence model generalized to the case of two-phase turbu-
lent flows.

In developing methods for calculation of the aerodynamics of two-phase turbulent flows, one must first
formulate the initial system of mass- and momentum-transfer equations for the actual parameters of flow of a het-
erogeneous medium and thereafter pass to the equations for the averaged quantities using the Reynolds procedure.
Unlike the laminar case, the system of averaged turbulent-flow equations is open, since the second moments of the
pulsation characteristics of a gasdispersed flow are present here in addition to the mean values of velocity, pres-
sure, density, etc. [1]. Using the same Reynolds procedure, we can construct the equations of transfer of second
moments, which contain third moments, etc. Therefore, to obtain a closed system of equations one should "break"
this process at a certain step, i.e., introduce additional hypotheses for the relationship between the highest and low-
est correlation moments.

In the present work, within the framework of the Eulerian approach, i.e., in the case of the so-called double-
fluid models, we have formulated a stationary, isothermal, axisymmetric system of averaged differential equations; the
system describes, in the narrow-channel approximation, the ascending motion of a gas suspension on the stabilized por-
tion of a pipe with allowance for the interphase and interparticle interaction and for the influence of the channel wall
and mass forces. The pulsation characteristics of the gas are calculated with the one-parameter turbulence model gen-
eralized to the case of two-phase turbulent flows. To compute the correlation moment sup′ vp′ t appearing in the aver-
aged equation of particle motion we use the Boussinesq hypothesis, according to which sup′ vp′ t is  equal  to
−ηt,p∂up

 ⁄ ∂r. In such an approach, it becomes necessary to determine the proportionality factor (coefficient of turbulent
viscosity of the "gas" of particles ηt,p) dependent on the Reynolds stress svp′ vp′ t [2–4]. In turn, the correlation svp′ vp′ t
is a function of the second (swp′wp′ t and swp′ vp′ t) and third (svp′ vp′ vp′t, svp′wp′wp′t, svp′ vp′wp′t, and swp′wp′wp′t) moments
(see below). To compute them we use a specially developed computational procedure; the procedure is based on con-
struction of the equations of transfer of the correlations sought, in which the pseudoturbulent (due to the interparticle
collisions) and turbulent effects are allowed for. Equations for the third moments are closed on the basis of a com-
bined approach which involves two methods of determination of the fourth moments appearing in these equations: the
first is based on representation of the fourth moments as the sum of the products of the second moments, whereas the
second provides for computing the quantities sought from the equations of transfer of the correlations themselves.

On the portion of stabilized flow of the ascending two-phase flow, the averaged radial motion of the gas and
particles is absent (vg = 0 and vp = 0) and the averaged parameters remain constant in the longitudinal direction:

∂ug
 ⁄ ∂z = ∂kg

 ⁄ ∂z = ∂up
 ⁄ ∂z = ∂ swp′ vp′ t ⁄ ∂z = ∂ svp′ vp′ t ⁄ ∂z = ∂ swp′

2 t ⁄ ∂z = ∂ swp′
3 t ⁄ ∂z = 0 .
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Furthermore, it is assumed that the true volume concentration of the solid phase is uniformly distributed over the chan-
nel cross section. With allowance for what has been said above, the system of transfer of the averaged and pulsation
parameters of the gas-dispersed flow may be represented as follows:
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The left-hand sides of the phase-momentum equations (1) allow for the viscous and Reynolds stresses, the pressure
gradient, and the drag and gravity forces.

To determine the coefficient of turbulent viscosity of the carrier flow we use the one-parameter turbulence
model, i.e., this system of equations is supplemented with the equation of transfer of the turbulent gas energy [1]:
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The first term of Eq. (2) describes the molecular and turbulent transfers of pulsation energy, the second term corre-
sponds to its generation due to the averaged-motion energy, the third and fourth terms describe its dissipation due to
the viscosity of the gas and the presence of a solid phase in it, and the last term describes the generation of turbulent
energy in the trails behind the particles.

As has been noted above, to compute the coefficient of turbulent viscosity of the particle "gas" ηt,p we must
find second and third correlation moments. For this purpose we construct the equations of transfer of the quantities
sought. To derive the equations of transfer of the Reynolds stresses svp′ vp′ t, swp′wp′ t, and swp′ vp′ t we must primarily
obtain the equations of pulsation motion of particles along the radial and transverse axes. For this purpose, we project
an image of the actual equation of motion of the dispersed phase onto the coordinate axes indicated. With account for
the axial symmetry of the problem (∂ ⁄ ∂ϕ = 0), projections of the equations of particle motion have the form
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(it is assumed that β
^
 = β). Applying the Reynolds procedure (Z^ p = wp + wp′  and Y^ p = vp + vp′ ) to Eqs. (3), we obtain
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(4)

Averaging Eqs. (4) with account for swp′ t = svp′ t = sup′ t = wp = wg = 0, we write
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In transforming (5), we use the pulsation continuity equation. In accordance with the coordinate selected (e.g., ϕ), we
first multiply the equation by the pulsation of the projection of the particle-velocity vector onto this axis, i.e., by the
quantity wp′ , and thereafter average it.

Subtracting the averaged equations (5) from the actual equations (4), we obtain the equations for the pulsation
velocity of particles along the radial and transverse axes:
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where
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To obtain the equations of transfer of normal Reynolds stresses svp′ vp′ t and swp′wp′ t we must multiply Eq. (6)
by the quantity vp′  and (7) by wp′  and carry out averaging. After simple manipulations with account for (8) in the ap-
proximation of a boundary layer on the portion of steady-state motion of the gas suspension the equations of transfer
of the moments sought take the form
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Equations (9) involve additional terms of nonturbulent origin (last terms of the equations), which describe the
generation and dissipation of the pseudoturbulent energy of the solid phase — the phenomena caused by the collisions
between particles due to their averaged and pulsatory motions. As has been noted in [3, 4], these terms cannot be
computed by the traditional methods of turbulence theory, since the pulsations due to interparticle collisions are mainly
dependent on the random position of a unit vector directed along the line of impact. Therefore, to determine these
terms we used a specially developed computational procedure based on an analysis of the dynamics of the process of
collisions [3, 4]. We may obtain, in a similar manner, the equation of transfer of the quantity swp′ vp′t:
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The mixed correlation moments of second order appearing in Eqs. (9) and (10) are determined in terms of the
correlations of the carrier flow in a locally homogeneous approximation in accordance with the recommendations of [1].

To close the given system of equations we must compute the third moments svp′ vp′ vp′ t, svp′wp′wp′ t, svp′ vp′wp′ t,
and swp′wp′wp′ t appearing in Eqs. (9) and (10). For this purpose we construct the equations of transfer of the correla-
tions sought. We use the equations of transfer of the third moment swp′wp′wp′ t to illustrate their derivation. Multiplying
the pulsation equation (7) by wp′wp′ , we obtain
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We transform Eq. (11) using expressions (8) and the pulsation continuity equation premultiplied by wp′wp′wp′  ⁄ 3. There-
after we carry out averaging in the equation obtained. Disregarding the mixed third correlation moment swp′wp′wg′ t in
the approximation of a narrow channel on the portion of stabilized gas-suspension flow, we write the equation of
transfer of the quantity swp′wp′wp′ t sought:
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We may obtain, in a similar manner, the following transfer equations for the remaining correlations sought:
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To close Eq. (12) we must find the correlation of fourth order svp′wp′3 t appearing in it. For this purpose we
construct the equation of transfer of the correlation moment sought. We multiply the pulsation equation (6) by wp′3  ⁄ 3
and Eq. (11) by vp′  and combine the resulting equations:
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We transform Eq. (16) using expressions (8) and the pulsation continuity equation premultiplied by vp′wp′3  ⁄ 3, after
which carry out averaging in the equation transformed. Disregarding the mixed fourth correlation moments (gas–parti-
cle), in the approximation of a narrow channel on the portion of steady-state motion of the two-phase flow, we reduce
the equation of transfer of the quantity svp′wp′3 t to the form
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Similarly to [5], the fifth correlation moments present in (17) may be represented as the sum of the products of the
correlations of second and third orders. With allowance for this, Eq. (17) may be transformed to the form
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Substituting (18) into (12), we obtain the final form of the equation of transfer of the third correlation moment
swp′3 t:
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Equation (13) involves the fourth correlation moments, which may be expressed similarly to [5]:
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Substituting (20) into (13), after simple manipulations we have
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Equation (14) may be closed with a representation of the fourth moment svp′3 wp′ t as the sum of the products
of second moments:
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We transform Eq. (14) with account for expressions (18) and (22). Omitting cumbersome computations, we write the
algebraic expression for the third moment svp′2 wp′ t:
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To close Eq. (15) we must determine the fourth moments svp′2 wp′2 t and swp′4 t appearing in it. Here we use a
combined method for computation of the quantities sought. The value of svp′2 wp′2 t is found on the basis of the Mil-
lionshchikov hypothesis assuming the equality of the cumulants of fourth order to zero and representing the fourth mo-
ments as the sum of the products of second moments. Finally we obtain
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The correlation of fourth order swp′4 t is calculated from the equation of its transfer in the approximation of a boundary
layer on the portion of steady-state motion of a two-phase flow; this equation may be obtained similarly to Eq. (12):
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Representing the fifth moment svp′wp′4 t in (25) as the sum of the products of second and third moments, we
transform (25) to the form

swp′
4 t = − τ 





swp′ vp′ t ∂ swp′
3 t

∂r
 + 

3 swp′ vp′ t swp′
3 t

r




 . (26)

Substituting (24) and (26) into (15), after simple manipulations we have

swp′
2 vp′ t = − τ 








svp′
2 t ∂ swp′

2 t

3∂r
 + 

2 swp′ vp′ t ∂ swp′ vp′ t

3∂r
 + 

τ swp′ vp′ t ∂ swp′
3 t

3r∂r
 +

+ 
τ swp′ vp′ t swp′

3 t

r
2

 + 
swp′

2 t
2

3r
 + 

2 svp′
2 t swp′

2 t

3r
 + 

2 swp′ vp′ t
2

3r




 . (27)

We transform Eqs. (9) and (10) using expressions (21), (23), and (27). As a result, the equation of transfer of
the quantity swp′ vp′ t will be represented in the form

βρp 







2∂

3r∂r
 



rτ svp′

2 t 
∂ swp′ vp′ t

∂r




 + 

∂

3r∂r
 






rτ swp′ vp′ t 

∂ svp′
2 t

∂r







 + 

2∂ (τ svp′
2 t swp′ vp′ t

3r∂r
 +
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+ 
∂

6r∂r
 






τ2

 svp′
2 t 

∂ swp′
3 t

∂r







 + 

∂

2r∂r
 






τ2

 swp′ vp′ t 
∂ swp′

2 vp′ t

∂r







 + 

∂

2r∂r
 




τ2
 svp′

2 t swp′
3 t

r




 +

+ 
∂

r∂r
 




τ2
 swp′ vp′ t swp′

2 vp′ t

r




 − 

∂

2r∂r
 




τ2
 swp′

2 t swp′
3 t

r




 + 

2∂ (τ swp′ vp′ t swp′
2 t)

3r∂r
 + 

swp′
3 t

r
 +

+ 
2τ svp′

2 t ∂ swp′ vp′ t

3r∂r
 + 

τ swp′ vp′t ∂ svp′
2 t

3r∂r
 + 

2τ svp′
2 t swp′ vp′ t

3r
2  + 

τ2
 svp′

2 t ∂ swp′
3 t

6r
2∂r

 +

+ 
τ2

 swp′ vp′ t ∂ swp′
2 vp′ t

2r
2∂r

 + 
τ2

 svp′
2 t swp′

3 t

2r
3

 + 
τ2

 swp′ vp′ t swp′
2 vp′ t

r
3  − 

τ2
 swp′

2 t swp′
3 t

2r
3

 +

+ 
2τ swp′ vp′ t swp′

2 t

3r
2




 + 

ρpβ

τ
 

svg′wp′ t + svp′wg′t − 2 swp′ vp′ t

 = 0 . (28)

The equation of transfer of the quantity svp′ vp′ t is

ρpβ 







∂

r∂r
 






rτ svp′

2 t 
∂ svp′

2 t

∂r







 − 

2

r
 
∂ (τ swp′ vp′ t

2)

∂r
 − 

2τ svp′
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3r
 
∂ swp′
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∂r
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− 
4τ swp′ vp′ t

3r
 
∂ swp′ vp′ t

∂r
 − 

2τ2
 swp′ vp′t ∂ swp′

3 t

3r
2∂r

 − 
2τ2

 swp′ vp′ t swp′
3 t

r
3  − 

2τ swp′
2 t

2

3r
2  −

− 
4τ svp′

2 t swp′
2 t

3r
2  − 

4τ swp′ vp′ t
2

3r
2




 + 

2ρpβ
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 svg′ vp′ t − svp′

2 t +

+ 2 




δ2ρp

6912β
 




∂up

∂r





2

 




1 − Kn
2

 − 
1 − Kτ

7





2

 − C1ρpβ svp′ vp′ t 1 − Kn
2





 N = 0 . (29)

The equation of transfer of the quantity swp′wp′ t is

ρpβ 







∂
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




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∂r







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


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


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∂
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





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∂r







 +
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∂
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
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

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 + 
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r
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2
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2
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2



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+ 2 










δ2ρp

6912β
 




∂up

∂r





2

 




1 − Kn

2
 − 

1 − Kτ

7





2

 − C2ρpβ swp′wp′ t 1 − Kn
2











 N = 0 . (30)

Boundary conditions on the flow axis for Eqs. (1), (2), (19), and (28)–(30) are specified from symmetry con-
siderations:


∂ug

 ⁄ ∂rax
 = ∂kg

 ⁄ ∂rax
 = ∂ swp′wp′wp′t ⁄ ∂rax

 = 0 ,


∂up

 ⁄ ∂rax
 = ∂ svp′ vp′ t ⁄ ∂rax

 = ∂ swp′wp′ t ⁄ ∂rax
 = ∂ swp′ vp′ t ⁄ ∂rax

 = 0 ;

(31)

on the channel wall, they are specified by the relations

ug,w = kg,w = 0 ,   up,w = 
δ

24 √2 β (1 − Kτ)
 




∂up

∂r



w

 (7Kn − 2Kτ − 5) , (32)


∂ svp′ vp′ t ⁄ ∂rw

 = ∂ swp′wp′ t ⁄ ∂rw
 = ∂ swp′ vp′ t ⁄ ∂rw

 = ∂ swp′wp′wp′ t ⁄ ∂rw
 = 0 . (33)

The given system of equations (1), (2), (19), and (28)–(30) with boundary conditions (31)–(33) has been in-
tegrated by the methods of direct and reverse marchings on a nonuniform grid clustering at the channel wall; the pres-
sure gradient was eliminated using the well-known method [6]. In accordance with the above algorithm, we developed
a program for calculation of two-phase flows.

Let us discuss results of calculations of two variants for the following initial data: β = 0.0012, ρg = 1.3
kg/ m3, and ρp = 1600 kg/ m3 (Variant I: δ = 0.14⋅10−3 m and ug,m = 8.5 m/sec; variant II: δ = 0.18⋅10−3 m and
ug,m = 6.5 m/sec.) Figures 1–5 give certain results of calculating the aerodynamics of a gasdispersed flow in a channel
of radius R = 0.1 m. Figure 1 illustrates the distribution of the averaged axial velocities of the gas particles on the
portion of steady-state motion. In the flow core, the dispersed phase lags behind the gas the larger, the higher the free-
fall velocity of the particles. In the wall region where the velocity of the carrier phase sharply decreases, particles lead
the gas: here the drag force is negative, and the suspension of the particles is caused by the action of Reynolds
stresses (Fig. 1, curves 2 and 4). Increase in the average (over the cross section) velocity of the carrier medium ug,m
contributes to the generation of the turbulent gas energy, because of which the kinetic pulsation energy of the gas in
variant I turns out to be higher than that in variant II (Fig. 2, curves 1 and 2).

Fig. 1. Profiles of the averaged axial velocities of the gas and particles: variant
I, 1) ug and 2) up; variant II, 3) ug and 4) up.

Fig. 2. Profiles of the kinetic energies of turbulent gas-velocity pulsations k: 1)
variant I; 2) variant II.
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Figure 3 gives the profiles of the second correlation moments of dispersed-phase-velocity pulsations. As the

calculation results show, the behavior of the dependence svp′ vp′ t(r) (curve 4) is mainly determined by the rate of gen-

eration of the energy of random (turbulent and pseudoturbulent) particle motion; on the one hand, it is caused by the
action of the drag force (tenth term of Eq. (29), 2ρpβsvp′ vg′ t ⁄ τ), on the other, by interparticle collisions (twelfth term

of Eq. (29) 
2δ2ρp(dup

 ⁄ dr)2N

6912β
 




1 − Kn

2
 − 

1 − Kτ
7





2

). On the ascending branch 0.0095 < r < 0.059 m, we have a mono-

tonic increase in the function svp′ vp′ t(r) due to the increase in the production of the energy of random particle motion;

it is caused by the increase in the mixed correlation moment svp′ vg′ t and the modulus of the gradient of axial velocity

of the particles ∂up
 ⁄ ∂r (Fig. 1, curve 2). The rate of generation of the turbulent dispersed-phase energy decreases

on the portion 0.059 < r < 0.078 m, which finally leads to a reduction in the derivative ∂svp′ vp′ t ⁄ dr. In the interval

0.078 < r < 0.098 m, the rate of generation of the pseudoturbulent energy sharply increases due to the significant in-

crease in the derivative ∂up
 ⁄ ∂r. This ensures a rapid growth in the function svp′ vp′ t(r) in this zone. The rate of pro-

duction of the energy of random particle motion noticeably decreases in the wall region r > 0.098 m, which

contributes to the decrease in the svp′ vp′ t(r) curve.

It is seen in Fig. 3 that the swp′wp′ t(r) curves are similar to the svp′ vp′ t(r) curves; the values of the functions
swp′wp′ t(r) and svp′ vp′ t(r) are virtually coincident in the peripheral region, whereas in the axial zone, they somewhat
differ from each other, which suggests the anisotropy of the field of pulsation energy of the solid phase in this zone
(Fig. 3; curves 3 and 4 and 5 and 6 are compared).

Figure 4 gives results of calculating the third moment of pulsations of the radial particle velocity svp′ vp′ vp′ t on
the portion of steady-state motion of a two-phase flow. In the interval 0.0095 < r < 0.055 m, the second term of the
right-hand side of Eq. (21) has a dominant role in the formation of the svp′ vp′ vp′ t(r) profile (curve 1). The monotonic
increase in the dependence svp′ vp′ vp′ t(r) is related to the rapid growth in the swp′ vp′ t(r) curve in the range in question
(Fig. 3, curve 1). On the portion 0.055 < r < 0.095 m, we have an increase in the first term of the right-hand side of
the equation indicated due to the growth in the svp′ vp′ t(r) curve and its derivative (Fig. 3, curve 4). The value of the
second term decreases, which is caused by the decrease in the dependence swp′ vp′ t(r) and by the growth in the coor-
dinate r. The values of both terms of Eq. (21) become equal at the point r = 0.0868 m but opposite in sign; therefore,
the function svp′ vp′ vp′ t(0.0868) is equal to zero. In the range 0.0868 < r < 0.095 m, where the dependence svp′ vp′ t(r)
sharply grows, the first term begins to prevail over the second term, which ensures further decrease in the svp′ vp′ vp′ t(r)
curve in this region. In the interval 0.095 < r < 0.0972 m, the first term decreases to the value of the second term
(∂svp′ vp′t ⁄ dr → 0) and, as a consequence, the function svp′ vp′ vp′ t(r) tends to zero. The dependence svp′ vp′ vp′ t(r) continues

Fig. 3. Profiles of the second correlation moments of dispersed-phase-velocity
pulsations: variant I, 1) swp′ vp′ t,  3) swp′wp′ t,  and 4) svp′ vp′ t; variant II, 2)
swp′ vp′ t, 5) swp′wp′ t, and 6) svp′ vp′ t.

Fig. 4. Distribution of the third correlation moment svp′ vp′ vp′ t over the flow
cross section: 1) variant I; 2) variant II.
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to grow in the wall range 0.0972 < r < 0.0994 m, which is related to the change of sign in the derivative
∂svp′ vp′ t ⁄ dr and to the increase in its absolute value.

Figure 5 gives the values of the correlation of third order of pulsations of the transverse particle velocity
swp′3 t on the portion of stabilized gas-suspension flow. It is seen in the figure that the function swp′3 t(r) has its maxi-
mum at the point r = 0.045 m (curve 1); the maximum is attributable to the influence of the eleventh and twelfth
terms of Eq. (19). The monotonic increase in the swp′3 t(r) curve on the ascending branch 0.018 < r < 0.045 m is
caused by the growth in the dependences  swp′wp′ t(r) and swp′ vp′ t(r) in this region (Fig. 3, curves 1 and 3). The de-
crease in the function swp′3 t(r) on the portion 0.045 < r < 0.064 m is related to the significant decrease in the twelfth
term of the equation indicated (∂swp′ vp′ t ⁄ dr → 0). In the interval 0.064 < r < 0.08 m, the derivative ∂swp′ vp′ t ⁄ dr
changes its sign, and its value (in modulus) grows. The moduli of the eleventh and twelfth terms of the equation be-
come equal at the point r = 0.08 m; as a consequence, swp′3 t(0.08) is equal to zero. As the coordinate r grows further
(0.08 < r < 0.094 m), the influence of the twelfth term of the equation turns out to be much higher than that of the
eleventh term, which is caused by the significant growth in the value of ∂swp′ vp′ t ⁄ dr. Therefore, the dependence
swp′3 t(r) continues to decrease in this zone. In the wall region 0.094 < r < 0.098 m, the behavior of the swp′3 t(r) curve
begins to be affected by the second term of the equation; as a result, the function swp′3 t(r) grows on this portion.

Thus, the mathematical model proposed makes it possible to obtain detailed information on the averaged and
pulsation characteristics of the carrier flow and the dispersed phase and may be useful in designing technical devices
intended for pneumatic transport of bulk materials, removal of solid impurities from gases, mechanical and thermal
treatment of powders, and burning of solid fuel.

NOTATION

C1, C2, and σ, empirical constants; F, force, kg/(sec2⋅m2); G, generation of the turbulent gas energy in the
trails behind particles, kg/(sec3⋅m); g, free-fall acceleration, m/sec2; K, recovery factor of velocity on impact; k, kinetic
pulsation energy, m2/sec2; N, impact frequency, 1/sec; P, gas pressure, N/m2; R, channel radius, m; r, z, ϕ, radial, lon-
gitudinal, and transverse coordinates, m; u, v, and w, averaged components of the velocity vector, m/sec; β, true vol-
ume concentration of particles; δ, particle diameter, m; ε, pulsation-energy dissipation, m2/sec3; η, kinematic viscosity,
m2/sec; ρ, density, kg/m3; τ, dynamic-relaxation time, sec. Subscripts and superscripts: a, aerodynamic; g, gas; m,
mean (average) over the cross section; n, normal; ax, flow axis; p, particle; t, turbulent; w, wall; τ, tangential; ′, pul-
sation component in time averaging; s t, time averaging.
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